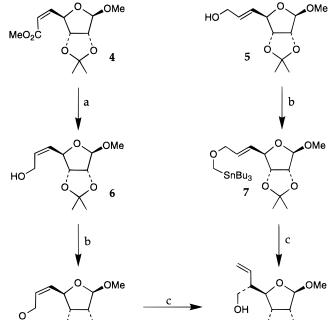
Stereoselective Synthesis of Protected Thymine Polyoxin C via [2,3]-Wittig-Still **Rearrangement of Ribose-Derived Allylic Stannyl Ethers**

Arun K. Ghosh* and Yong Wang Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607


Received April 29, 1998

The [2,3]-Wittig rearrangement leading to stereocontrolled carbon-carbon bond formation has been increasingly utilized in organic synthesis.¹ The synthetic potential of this reaction is extended even further in Still's variant of the [2,3]-Wittig rearrangement (Wittig-Still rearrangement) where unstable oxymethyllithium is generated at low temperature by a tin-lithium exchange reaction.² Recently, we reported a stereoselective synthesis of an antifungal nucleoside, sinefungin.³ In our continuing interest in the development of synthetic methodologies for bioactive amino acid nucleosides, we have investigated the [2,3]-Wittig rearrangement of Eand Z-allylic stannyl ethers derived from an isopropylidene D-ribose derivative. Herein we report that the [2,3]-rearrangement of Z-allylic stannyl ether proceeded with nearly complete syn selectivity and excellent isolated yield. The resulting [2,3]-rearranged product was converted to the protected thymine polyoxin C, which is a basic component of many bioactive polyoxins, including polyoxin J (1). Polyoxins are important antifungal agents with chitin synthetase inhibitory properties.⁴ Synthesis and biological evaluation of polyoxins and their variants have been the subject of immense interest over the years.^{5,6} Early syntheses of polyoxin nucleosides via cyanohydrin formation at the C-5' aldehyde of uridine have been reported.^{5g,h} A very useful strategy to polyoxin C and other glycosyl α -amino acids has been developed from D-serinal.^{5c} Protected ribose-derived nitro olefin and nitrone-based strategies have also been utilized in the synthesis of polyoxin C.5b,d Thymine polyoxin has been synthesized from myoinositol and other noncarbohydrate

Bruckner, R.; Priepke, H. Angew. Chem., Int. Ed. Engl. 1988, 27, 278.
 (3) Ghosh, A. K.; Liu, W. J. Org. Chem. 1996, 61, 6175.

(4) (a) Isono, K.; Suzuki, S. Heterocycles 1979, 13, 333. (b) Gooday, G. W. Abh. Dtsch. Akad. Wiss. DDR, Abt. Math. Naturwiss.; Tech., Issue 2N; 1979; p 159. (c) Mori, M.; Kakiki, K.; Misato, T. Agric. Biol. Chem. 1974, 38, 699.

(5) For synthesis of polyoxin nucleotides, see: (a) Dehoux, C.; Fontaine, E.; Escudier, J.-M.; Baltas, M.; Gorrichon, L. J. Org. Chem. 1998, 63, 2601. (b) Dondoni, A.; Junquera, F.; Merchan, F. L.; Merino, P.; Tejero, T. Tetrahedron Lett. 1994, 35, 9439. (c) Garner, P.; Park, J. M. J. Org. Chem. 1990, 55, 3772. (d) Barrett, A. G. M.; Lebold, S. A. *J. Org. Chem.* **1990**, *55*, 3853. (e) Auberson, Y.; Vogel, P. *Tetrahedron* **1990**, *46*, 7019. (f) Tabusa, F.; Yamada, T.; Suzuki, K.; Mukaiyama, T. Chem. Lett. **1984**, 405. (g) Damodaran, N. P.; Jones, G. H.; Moffatt, J. G. J. Am. Chem. Soc. **1971**, *93*, 3812. (h) Naka, T.; Hashizume, T.; Nishimura, M. Tetrahedron Lett. 1971, 95.

Scheme 1^a

ref. 3

EtO₂C

3

9

OMe

2

ref. 8b

SnBu₃

^a Key: (a) DIBAL, CH₂Cl₂, -78 °C, 2-3 h (92-95%); (b) KH, Bu₄N⁺I⁻, Bu₃SnCH₂I, THF, 23 °C, 4 h; (c) "BuLi, THF, -78 °C, 2 h (74-84%).

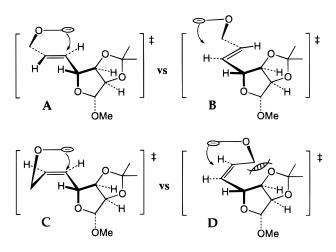
8

precursors as well.^{5a,e,6c} Our approach to polyoxin C synthesis is based upon the chain lengthening of sugars by a highly stereoselective [2,3]-Wittig rearrangement.

The known⁷ methyl glycoside **2** was readily converted to *trans*- α , β -unsaturated ester **3** by Swern oxidation followed by Horner-Emmons olefination with sodium hydride and triethyl phosphonoacetate as described previously.³ The $cis-\alpha,\beta$ -unsaturated ester **4** was prepared selectively by Still's variant of Horner-Emmons olefination with bis(2,2,2-trifluoroethyl)methoxycarbonylmethyl phosphonate.8 Reduction of these esters with DIBAL in CH_2Cl_2 at -78 °C for 2 h provided the respective trans- and cis-allylic alcohols 5 and 6 in excellent yields (Scheme 1). Etherification of alcohols 5 and 6 with potassium hydride and Bu₃SnCH₂I in the presence of catalytic amounts of ⁿBu₄N⁺I⁻ afforded the respective *E*- and *Z*-stannylated ethers 7 and 8. Tin-

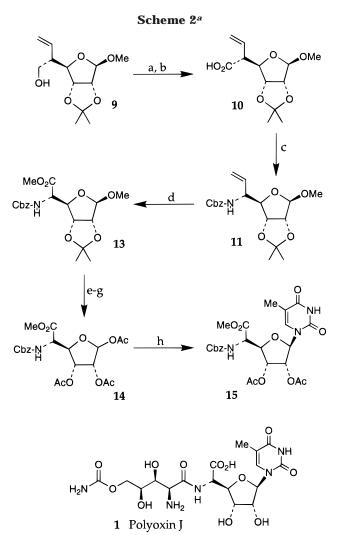
OMe

^{(1) (}a) Nakai, T.; Mikami, K. Org. React. 1994, 46, 105. (b) Marshall, J. A. Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 3, p 975 and references therein. (Ž) (a) Still, W. C.; Mitra, A. J. Am. Chem. Soc. 1978, 100, 1927. (b)


⁽⁶⁾ For the total synthesis of polyoxins, see: (a) Akita, H.; Uchida,
K.; Kato, K. *Heterocycles* 1998, 47, 157. (b) Dondoni, A.; Junquera, F.;
Merchan, F. L.; Merino, P.; Tejero, T. J. Org. Chem. 1997, 62, 5497.
(c) Chida, N.; Koizumi, K.; Kitada, Y.; Yokoyama, C.; Ogawa, S. J.
Chem. Soc. Chem. Commun. 1994, 111. (d) Mukaiyama, T.; Suzuki,
K.; Yamada, T.; Tabusa, F. Tetrahedron 1990, 46, 265. (e) Kazuhara,
H.: Ohrui, H.: Emeto, S. Tetrahedron Lett. 1973, 5055, and references H.; Ohrui, H.; Emoto, S. Tetrahedron Lett. 1973, 5055 and references therein.

^{(7) (}a) Ghosh, A. K.; McKee, S. P.; Sanders, W. M.; Darke, P. L.; Zugay, J. A.; Emini, E. A.; Schleif, W. A.; Quintero, J. C.; Huff, J. R.; Anderson, P. S. Drug Des. Discovery 1993, 10, 77. (b) Levene, P. A.;
 Stiller, E. T. J. Biol. Chem. 1934, 299.
 (8) (a) Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405.

⁽b) Spada, M. R.; Ubukata, M.; Isono, K. Heterocycles 1992, 34, 1147.


lithium exchange of *E*-stannyl ether **7** with ^{*n*}BuLi at -78 °C in THF resulted in a syn/anti mixture (4.4:1 by 400-MHz ¹H NMR) of rearranged product **9** and its epimer in **84**% yield after silica gel chromatography. On the other hand, the reaction of *Z*-stannyl ether **8** with ^{*n*}BuLi provided exclusively the syn product **9** in 74% isolated yield. ¹H NMR (400 MHz) revealed the presence of a single isomer.

The initial stereochemical assignment of the [2,3]rearranged syn product 9 has been made on the basis of previous stereochemical studies of [2,3]-Wittig-Still rearrangement by Brückner and co-workers.⁹ Further evidence of this stereochemical assignment was provided after the syn-rearranged product 9 was converted to thymine polyoxin C. The stereochemical assignment is also consistent with "Houk-like" transition-state models as shown in Figure $1.^{10}$ In these models, the allylic C–O bond is orthogonal to the plane of the allylic C=C and is antiperiplanar with respect to the impending carbanion. Consistent with these models, both compounds 7 (Eisomer) and **8** (Z-isomer) provided the same major rearranged product 9 through the more favorable transition states A and C, respectively. Between the corresponding diastereomeric transition states **B** (*E*-isomer) and **D** (*Z*-isomer), transition state **D** is highly disfavored because of severe developing allylic [1,3] strain. This may explain why compound 8 (Z-isomer) provided exclusively syn-rearranged product 9 compared to compound 7 (Eisomer), which has exhibited a syn/anti product ratio of 4.4:1.

Figure 1.

As shown in Scheme 2, alcohol **9** was converted to Cbzprotected amine derivative **11** by oxidation followed by Curtius rearrangement of the resulting carboxylic acid. Thus, Swern oxidation of **9** provided the corresponding aldehyde which, upon exposure to sodium chlorite in *tert*butyl alcohol, afforded the acid **10**. It is important to note that the use of triethylamine in the standard Swern oxidation protocol resulted in a substantial amount of epimerization of the resulting β , γ -unsaturated carboxaldehyde. This epimerization was circumvented by the

^a Key: (a) Swern oxidation; (b) NaClO₂, Me₂C=CHMe, 'BuOH, 23 °C, 12 h; (c) MeOCOCl, 'Pr₂NEt, NaN₃ then PhCH₂OH, PhMe, 100 °C, 12 h (68% from **9**); (d) O₃, NaOH, CH₂Cl₂, MeOH, -78 to 23 °C, 2 h (94%); (e) Dowex 50W, MeOH, 65 °C, 12 h; (f) Ac₂O, Py, 23 °C, 4 h; (g) Ac₂O, AcOH, CH₂Cl₂, cat. H₂SO₄, 23 °C, 2 h (70% from **13**); (h) Thymine-bis-TMS, Cl (CH₂)₂Cl, TMSOTf, 45 °C, 2 h (80%).

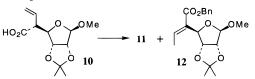
use of diisopropylethylamine instead of triethylamine. The above acid **10** without further purification was exposed to diisopropylethylamine, methyl chloroformate, and sodium azide at 0 °C. The resulting acyl azide was dissolved in toluene and heated at 100 °C for 1 h. After this period, benzyl alcohol was added and the mixture was heated at reflux for 12 h to furnish the Cbz derivative 11 in 68% yield (from 9) after silica gel chromatography. Since the Curtius rearrangement proceeds with retention of configuration of the migrating carbon atom, the stereochemistry of the urethane-bearing chiral center in **11** was assigned accordingly.¹¹ Of particular note, the attempted Curtius rearrangement of 10 with diphenylphosphoryl azide and triethylamine followed by treatment with benzyl alcohol and subsequent heating at reflux for 10 h resulted in α,β -unsaturated ester 12 as the major product, along with a small amount of Cbz derivative **11**.¹² For conversion of the vinyl group in **11**

^{(9) (}a) Priepke, H.; Brückner, R. *Chem. Ber.* **1990**, *123*, 153. (b) Priepke, H.; Brückner, R.; Harms, K. *Chem. Ber.* **1990**, *123*, 555. (c) Scheuplein, S. W.; Kusche, A.; Brückner, R.; Harms, K. *Chem. Ber.* **1990**, *123*, 917 and references therein.

⁽¹⁰⁾ Houk, K. N.; Paddon-Row, M. N.; Rondan, N. G.; Wu, Y.-D.; Brown, F. K.; Spellmeyer, D. C.; Metz, J. T.; Li, Y.; Loncharich, R. J. Science **1986**, 231, 1108.

^{(11) (}a) Ghosh, A. K.; Hussain, K. A.; Fidanze, S. J. Org. Chem. 1997, 62, 6080. (b) Grunewald, G. L.; Ye, Q. J. Org. Chem. 1988, 53, 4021.
(c) Ninomiya, K.; Shiori, T.; Yamada, S. Tetrahedron 1974, 30, 2151 and references therein.

To install thymine at the anomeric center, the protecting group interconversion of 13 to triacetate 14 was carried out in a three-step sequence: (1) removal of the isopropylidene group with Dowex 50W H⁺ in methanol, (2) acetylation of the resulting diol with acetic anhydride in pyridine, and (3) acetal exchange by treatment with acetic anhydride and a catalytic amount of concentrated sulfuric acid in a mixture of glacial acetic acid and CH2-Cl₂ at 23 °C for 2 h (70%, 2:1 mixture of anomers). Triacetate 14 was exposed to Vorbrüggen reaction conditions¹⁴ with 5-methyl-2,4-bis(trimethylsilyloxy)pyrimidine in the presence of TMSOTf in dichloroethane at 45 °C for 2 h to afford the protected β -nucleoside 15 (mp 81–83 °C) in 80% yield after silica gel chromatography. The spectral properties (¹H and ¹³C NMR) of **15** ($[\alpha]^{23}$ _D +17.1, c 0.45, CHCl₃; lit.^{5a} $[\alpha]^{23}_{D}$ +19.8, c 0.56, CHCl₃) are in full agreement with the reported values.


In conclusion, a stereoselective synthesis of protected thymine polyoxin C has been accomplished starting from D-ribose. The key steps in the synthesis are a highly diastereoselective [2,3]-sigmatropic reaction of Z-allylic stannyl ethers, followed by conversion of the resulting hydroxymethyl group to the Cbz-protected amine derivative by a Curtius rearrangement. The stereoelectronic effects of the [2,3]-Wittig rearrangement of the ribose-derived E- and Z-stannyl ethers are noteworthy. Further application of this stereoselective [2,3]-Wittig–Still rearrangement in synthesis is in progress.

Experimental Section

All melting points were recorded and uncorrected. Anhydrous solvents were obtained as follows: 1,2-dichloroethane was first refluxed for 2 h over P_2O_5 and then distilled, tetrahydrofuran was distilled from sodium and benzophenone, methylene chloride was distilled from CaH₂ and trimethylchlorosilane and pyridine were distilled from CaH₂. All other solvents were HPLC grade. Column chromatography was performed with Whatman 240–400 mesh silica gel under a low pressure of 5–10 psi. Thin-layer chromatography (TLC) was carried out with Merck silica gel 60 F-254 plates.

Methyl (*É*)-5,6-Dideoxy-2,3-*O*-isopropylidene- β -D-*ribo*-hept-5- enofuranoside (5). To a stirred solution of ester 3³ (1.7 g, 6.62 mmol) in CH₂Cl₂ (10 mL) at -78 °C was added DIBAL (1 M in hexane, 19 mL, 19 mmol) solution, and the resulting mixture was stirred at -78 °C for 2 h. After this period, the reaction was carefully quenched with water (3 mL) and the mixture was allowed to warm to 23 °C. The mixture was filtered through a glass wool plug, and the solid was rinsed several times with CH₂Cl₂ and water. The combined filtrate was transferred to a separatory funnel, and the layers were separated. The aqueous layer was extracted with CH₂Cl₂ (2 × 20 mL), and the combined organic layers were dried over anhydrous

(12) The tentative α , β -unsaturated ester **12** was formed as a major product (50% yield).

Compound **11** was isolated in a small amount (<10% yield): ¹H NMR (200 MHz, CDCl₃) δ 7.35 (m, 5H), 6.16 (q, 1H, J = 7.4 Hz), 5.23 (brs, 1H), 5.12 (d, 2H, J = 4.7 Hz), 5.03 (s, 1H), 4.65 (dd, 1H, J = 1.0, 6.0 Hz), 4.59 (d, 1H, J = 6.0 Hz), 3.43 (s, 3H), 1.77 (d, 3H, J = 7.4 Hz), 1.52 (s, 3H), 1.30 (s, 3 H).

(13) Marshall, J. A.; Garofalo, A. W.; Sedrani, R. *Synlett* 1992, 643.
(14) Vorbrüggen, H.; Krolikiewicz, K.; Bennua, B. *Chem. Ber.* 1981, 114, 1234.

Na₂SO₄. Evaporation of the solvent gave a residue which was purified on a silica gel column (50% ethyl acetate/hexane) to afford 5 as a colorless oil (1.335 g, 92%): $[\alpha]^{23}_{D} - 42.2$ (*c* 0.83, CHCl₃); IR (neat) 3423, 2950, 2930, 1630, 1374, 1088 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.82 (m, 2H), 4.98 (s, 1H), 4.66 (d, 1H, *J* = 8.2 Hz), 4.61 (s, 2H), 4.15 (t, 1H, *J* = 5.4 Hz), 3.34 (s, 3H), 1.49 (s, 3H), 1.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 24.9, 26.4, 54.7, 62.6, 84.5, 85.4, 87.4, 109.3, 112.3, 130.4, 132.4; MS (EI) *m*/*z* 230 (M⁺), 215 (M⁺ - Me), 198, 155. Anal. Calcd for C₁₁H₁₈O₅: C, 57.38; H, 7.88. Found: C, 57.22; H, 7.94.

Methyl (*Z*)-5,6-Dideoxy-2,3-*O*-isopropylidene- β -D-ribohept-5-enofuranoside (6). To a stirred solution of ester 4⁸ (1.07 g, 4.15 mmol) in CH₂Cl₂ (15 mL) at -78 °C was added DIBAL (1.0 M in hexane, 12.4 mL, 12.4 mmol) solution, and the resulting mixture was stirred for 3 h at -78 °C. After this period, the reaction was worked up as described for 5 to furnish the allyl alcohol **6** as a colorless oil (930 mg, 95%): ¹H NMR (400 MHz, CDCl₃) δ 5.74 (m, 1H), 5.61 (m, 1H), 4.97 (s, 1H), 4.95 (d, 1H, J = 9.5 Hz), 4.62 (d, 1H, J = 5.9 Hz), 4.58 (d, 1H, J = 5.9 Hz),4.33 (m, 1H), 4.24 (m, 1H), 3.31 (s, 3H), 1.49 (s, 3H), 1.30 (s, 3H); MS (EI) *m*/*z* 230 (M⁺), 215 (M⁺ - Me), 198, 155.

Methyl 5-(S)-Deoxy-5-vinyl-2,3-O-isopropylidene-β-Dribo-hexanofuranoside (9). To a suspension of KH (418 mg, 10.4 mmol, prewashed with hexane) and tetrabutylammonium iodide (25 mg) in dry THF (10 mL) at 0 °C was added dropwise a solution of alcohol 5 (1.2 g, 5.23 mmol) in THF (2 mL). The resulting red suspension was allowed to warm to 23 °C, and the mixture was stirred for 1 h. The reaction was cooled to 0 °C, and Bu₃SnCH₂I (2.1 g, 6.8 mmol) in THF (2 mL) was added dropwise over a period of 2 min. The mixture was stirred at 0-23 °C for 4 h. After this period, the reaction was quenched with a saturated NH₄Cl solution (10 mL). The layers were separated, and the aqueous layer was extracted with ethyl acetate. The combined organic layers were dried over anhydrous Na₂SO₄. Evaporation of the solvents provided the allyl stannylmethyl ether 7 as a colorless oil. This material was used for the next reaction without further purification. An analytical sample of 7 was obtained by flash chromatography over silica gel (5% ethyl acetate/hexane): ¹H NMR (400 MHz, CDCl₃) δ 5.71–5.74 (m, 2H), 4.98 (s, 1H), 4.65 (d, 1H, J = 10.9 Hz), 4.61 (s, 2H), 3.85 (d, 2H, J = 6.8 Hz), 3.69 (s, 2H), 3.32 (s, 3H), 1.49 (s, 3H), 1.35 (s, 3H), 1.20-1.62 (m, 12H), 0.85-0.94 (m, 15H).

To a stirred solution of above crude stannyl ether 7 in THF (10 mL) at -78 °C, was added "BuLi (2.5 M in hexane, 3.2 mL, 8 mmol) dropwise by a syringe pump over a period of 1 h. The resulting mixture was stirred for 2 h at -78 °C. After this period, the reaction was quenched with saturated $\rm NH_4Cl$ solution and the resulting mixture was warmed to 23 °C. The layers were separated, and the aqueous layer was extracted with ethyl acetate (2×20 mL). The combined organic layers were dried over anhydrous Na_2SO_4 . Evaporation of the solvents gave a residue which was chromatographed over silica gel (25% ethyl acetate/hexane) to furnish an inseparable mixture (4.4:1 by ¹H NMR) of **9** and its epimer (1.07 g, 84% from **5**) as a colorless oil. Major isomer **9**: IR (neat) 3454, 2988, 2936, 1643, 1374, 1090 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.81 (m, 1H), 5.27 (dd, 1H, J = 1.1, 10 Hz), 5.21 (dd, 1H, J = 1.1, 18 Hz), 4.95 (s, 1H), 4.71 (dd, 1H, J = 1.5, 6.2 Hz), 4.53 (d, 1H, J = 6.2 Hz), 4.25 (dd, 1H, J = 1.5, 8 Hz), 3.72 (m, 1H), 3.59 (m, 1H), 3.35 (s, 3H), 2.46 (m, 1H), 1.49 (s, 3H), 1.35 (s, 3H); $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃) δ 136, 135.4, 118.9, 112.6, 109.4, 87.3, 85.3, 82.2, 64.1, 63.2, 55.6; MS (EI) m/z 213 (M⁺ - OMe), 197, 173, 59. Anal. Calcd for C12H20O5: C, 59.0; H, 8.25. Found: C, 58.90; H, 8.40. Minor isomer: ¹H NMR (400 MHz, CDCl₃) & 5.15 (m, 1H), 5.29 (m, 2H), 4.99 (s, 1H), 4.68 (dd, 1H, J = 1, 5.9 Hz), 4.57 (d, 1H, J =5.9 Hz), 4.14 (d, 1H, J = 11.2 Hz), 3.81 (m, 1H), 3.66 (m, 1H), 3.40 (s, 3H), 2.46 (m, 1H), 1.48 (s, 3H), 1.31 (s, 3H).

Methyl 5-(S)-Deoxy-5-vinyl-2,3-*O***-isopropylidene**- β -D*ribo*-hexanofuranoside (9). (prepared from *Z*-alcohol 6). The *Z*-alcohol 6 (672.8 mg, 2.92 mmol) was converted to *Z*-stannyl ether 8 as a colorless oil by following the procedure described for *E*-stannyl ether 7. This material was used for the next reaction without further purification. An analytical sample of 8 was obtained by flash chromatography over silica gel (5% ethyl acetate/hexane). ¹H NMR for 8: (400 MHz, CDCl₃) δ 5.61 (dd, 2H, *J* = 4.2, 5 Hz), 4.96 (s, 1H), 4.92 (d, 1H, *J* = 6.7 Hz), 4.62 (d, 1H, *J* = 5.8 Hz), 4.56 (d, 1H, *J* = 5.6 Hz), 4.0 (d, 1H, *J* = 4.1 Hz), 3.72 (s, 2H), 3.31 (s, 3H), 1.43 (s, 3H), 1.29 (s, 3H), 1.24–1.63 (m, 12H), 0.86–0.98 (m, 15H). Wittig–Still rearrangement of Z-stannyl ether **8** as described above (for stannyl ether **7**) provided the alcohol **9** (528 mg, 74% from **6**) exclusively as a colorless oil: $[\alpha]^{23}_D$ –29 (c 0.13, CHCl₃).

Methyl 5-(R)-N-[(Phenylmethoxy)carbonyl]-5,6-dideoxy-2,3-O-isopropylidene-β-D-ribo-hept-6-enfuranoside (11). To a stirred solution of DMSO (0.18 mL, 2.54 mmol) in CH_2Cl_2 (5 mL) at -78 °C was added dropwise oxalyl chloride (0.13 mL, 1.52 mmol). The resulting mixture was stirred for 2 min, and then a solution of alcohol 9 (248 mg, 1.02 mmol) in CH₂Cl₂ (2 mL) was added dropwise over a period of 1 min. The mixture was stirred at -78 °C for an additional hour. The reaction was quenched with diisopropylethylamine (0.9 mL, 5.08 mmol), and the mixture was allowed to warm to 0 °C for 30 min. Ethyl acetate (20 mL) was added to the reaction mixture, and the mixture was successively washed with a 1 M aqueous NaHSO₄ solution (20 mL) and pH 7 buffered solution (20 mL). The organic layer was dried over anhydrous Na₂SO₄. Evaporation of the solvent gave the crude aldehyde, which was used for the next reaction immediately without further purification.

To a stirred solution of the above aldehyde in a mixture of *tert*-butyl alcohol (10 mL) and 2-methyl-2-butene (3 mL) at 23 °C were added sodium chlorite (900 mg, 10 mmol) in water (1 mL) and NaH₂PO₄ (1.38 g, 10 mmol) in water (1 mL) sequentially. The resulting mixture was stirred at 23 °C for 12 h. After this period, the reaction mixture was diluted with saturated NH₄Cl (10 mL) and the mixture was extracted with ethyl acetate (3 \times 20 mL). The combined organic layers were dried over anhydrous Na₂SO₄. Evaporation of the solvent provided the acid, which was directly used for the next reaction.

To a stirred solution of the above acid in acetone (4 mL) was added diisopropylethylamine (0.21 mL, 1.22 mmol) at 0 °C. The resulting mixture was stirred for 10 min, and ClCO₂Me (0.1 mL, 1.32 mmol) was added dropwise over a period of 1 min. The reaction mixture was stirred at 0 °C for 30 min, and then sodium azide (132 mg, 2.03 mmol) in water (2 mL) was added. The mixture was stirred for an additional 30 min at 0 °C. After this period, CH₂Cl₂ (20 mL) and water (20 mL) were added and the layers were separated. The aqueous layer was extracted with CH_2Cl_2 (2 \times 20 mL). The combined organic layers were successively washed with 1 M NaHSO₄ (20 mL) and pH 7 buffer (20 mL) and dried over anhydrous Na₂SO₄. Evaporation of the solvent under reduced pressure gave a colorless oil, which was dissolved in toluene (5 mL). The resulting mixture was heated at 100 °C for 1 h. After this period, benzyl alcohol (0.21 mL, 2 mmol) was added and the resulting mixture was refluxed for 12 h. The reaction was cooled to 23 °C, and the solvent was evaporated to give a yellow residue, which was chromatographed over silica gel (5% ethyl acetate/benzene) to furnish the Cbz derivative 11 (249 mg, 68% from 9) as a white solid: mp 80-82°C; $[\alpha]^{23}_{D}$ –11 (c 0.18, CHCl₃); IR (neat) 3447, 2925, 1643, 1239, 1092 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.26–7.37 (m, 5H), 5.95 (m, 1H), 5.28 (d, 1H, J = 11.4 Hz), 5.25 (dd, 1H, J = 1, 4.7 Hz) 5.12 (dd, 1H, J = 4.7, 17 Hz), 4.98 (s, 1H), 4.97 (br s, 1H), 4.74 (d, 1H, J = 4.9 Hz), 4.59 (d, 1H, J = 4.9 Hz), 4.29 (dd, 1H, J = 5.6, 9.9 Hz), 3.98 (dd, 1H, J = 1.1, 9.4 Hz), 3.34 (s, 3H), 1.46 (s, 3H), 1.29 (s, 3H); $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃) δ 25.0, 26.5, 55.0, 55.5, 66.9, 88.9, 109.7, 112.5, 116.8, 126.9, 127.5, 128.0, 128.1, 128.4, 135.3, 136.2, 155.9; MS (EI) m/z 363 (M⁺), 331, 173, 146, 115, 91. Anal. Calcd for C₁₉H₂₅NO₆: C, 62.80; H, 6.93; N, 3.86. Found: C, 62.19; H, 7.14; N, 3.58.

Methyl (Methyl-5-*N*-[(phenylmethoxy)carbonyl]-5-deoxy-2,3-*O*-isopropylidene-β-D-allofuranoside)uronate (13). To a stirred solution of 11 (36.5 mg, 0.1 mmol) in a mixture of CH₂-Cl₂ (3 mL) and MeOH (1 mL) was added solid NaOH (20 mg), and a stream of ozonized oxygen was bubbled through this stirred mixture at -78 °C until the color of the solution changed from yellow to blue. The reaction mixture was diluted with water and allowed to warm to 23 °C. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂. The combined organic layers were dried over anhydrous Na₂SO₄. Evaporation of the solvent gave a residue, which was chromatographed over silica gel (15% ethyl acetate/hexane) to provide the methyl ester **13** (37.1 mg, 94%) as a white solid: mp 66–68 °C; [α]²³_D -14 (*c* 2.81, CHCl₃); IR (neat) 3428, 1720, 1643, 1109 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.41 (m, 5H), 5.52 (d, 1H, *J* = 8.3 Hz), 5.11 (brs, 2H), 4.96 (s, 1H), 4.93 (d, 1H, J = 5.8 Hz), 4.57 (d, 1H, J = 5.8 Hz), 4.49 (t, 1H, J = 8 Hz), 4.33 (d, 1H, J = 7.6 Hz), 3.75 (s, 3H), 3.32 (s, 3H), 1.51 (s, 3H), 1.30 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 25.0, 26.4, 52.5, 55.8, 56.4, 67.3, 81.3, 85.0, 87.6, 110.1, 112.6, 128.2, 128.5, 135.9, 155.7, 170.5; MS (EI) m/z 396 (M⁺ + H), 395 (M⁺), 173, 91. Anal. Calcd for C₁₉H₂₅NO₈: C, 57.71; H, 6.31; N, 3.54. Found: C, 57.53; H, 6.36; N, 3.75.

Methyl 5-Deoxy-5-[(phenylmethoxy)carbonyl]amino]-β-D-allofuranuronate-1,2,3-triacetate (14). To a stirred solution of 13 (446.5 mg, 1.14 mmol) in MeOH (20 mL) was added Dowex 50W H⁺ resin (600 mg), and the mixture was heated at 65 °C for 12 h. After this period, the resin was filtered off and the solvent was removed under reduced pressure. The residue was dissolved in pyridine (4 mL), Ac₂O (1 mL) was added, and the resulting mixture was stirred at 23 °C for 4 h. The reaction mixture was poured into ice, stirred for 30 min, and extracted with ethyl acetate (2 \times 20 mL). The combined organic layers were successively washed with saturated aqueous CuSO₄ solution and brine and then dried over anhydrous Na₂SO₄. Evaporation of the solvent gave a residue, which was dissolved in a mixture of CH₂Cl₂ (2 mL) and AcOH (2 mL). To this mixture at 0 $^\circ C$ was added Ac_2O (0.5 mL), followed by a drop of concentrated H₂SO₄. The resulting mixture was stirred at 0 °C for 1 h and then at 23 $^\circ C$ for 2 h. The reaction mixture was poured onto ice and stirred for 30 min. The layers were separated, and the aqueous layer was extracted with CH₂Cl₂ (2 \times 10 mL). The combined organic layer was successively washed with saturated NaHCO3 and brine and dried over anhydrous Na₂SO₄. Evaporation of the solvent provided a residue, which was chromatographed on silica gel (33% ethyl acetate/hexane) to furnish the triacetate **14** (373 mg, 70% from **13**) as a colorless oil: IR (neat) 3420, 1750, 1720 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (s, 5H), 6.36 (d, 0.33H, J = 8.9 Hz, α-anomer), 6.09 (s, 0.67H, β -anomer), 5.54 (m, 1H), 5.29 (d, 1H, J = 4.7 Hz), 5.11 (s, 2H), 4.67 (dd, 1H, J = 4.4, 8.7 Hz), 4.45 (dd, 1H, J = 4.4, 7.6 Hz), 3.76 (s, 3H), 2.10 (s, 3H), 2.01 (s, 6H).

Methyl 1,5-Dideoxy-1-(3,4-dihydro-5-methyl-2,4-dioxo-1(2H)-pyrimidinyl)-5-[[(phenylmethoxy)carbonyl]amino]- β -D-allofuranuronate-2,3-diacetate (15). To a stirred suspension of thymine (17 mg, 0.13 mmol) in hexamethyl disilazane (2 mL) was added trimethylchlorosilane (0.1 mL), and the resulting mixture was heated at 120 °C for 5 h. The mixture was cooled to 23 °C, and the solvent was removed under reduced pressure to give the crude bis-silylated thymine. The residue was dissolved in dichloroethane (2 mL), and a solution of triacetate 14 (20 mg, 0.043 mmol) in dichloroethane (1 mL) followed by TMSOTf (46 µL, 0.126 mmol) was added at 23 °C. The resulting mixture was heated at 45 °C for 2 h, cooled to 23 °C, and guenched with saturated sodium bicarbonate solution. The layers were separated, and the aqueous layer was extracted with CH_2Cl_2 (3 \times 10 mL). The combined organic layers were dried over anhydrous Na₂SO₄, and the solvents were evaporated under reduced pressure. The resulting residue was chromatographed on silica gel (40% ethyl acetate/benzene) to give the title nucleoside 15 (18.4 mg, 80%) as a pale yellow solid: mp 81-83 °C; $[\alpha]^{23}_{D}$ +17.1 (c 0.45, CHCl₃); IR (neat), 3380, 1750, 1715 cm⁻¹; ¹H NMR (200 MHz, CDCl₃) δ 8.15 (s, 1H), 7.35 (s, 5H), 7.05 (d, 1H, J = 0.7 Hz), 5.93 (d, 1H, J = 5.6 Hz), 5.79 (d, 1H, J = 8.1Hz), 5.51 (t, 1H, J = 5.9 Hz), 5.26 (t, 1H, J = 5.9 Hz), 5.14 (s, 2H), 4.81 (dd, 1H, J = 3.7, 8.5 Hz), 4.39 (dd, 1H, J = 3.7, 4.7 Hz), 3.81 (s, 3H), 2.09 (s, 6H), 1.87 (d, 3H, J = 0.7 Hz); ¹³C NMR (100 MHz, CD₃COCD₃) δ 12.3, 20.3, 52.8, 56.1, 67.1, 70.6, 72.9, 81.8, 89.3, 111.6, 128.5, 128.6, 129.1, 137.3, 137.7, 151.4, 157.4, 164.0, 169.9, 170.0, 170.1; MS (EI) m/z 534 (M⁺ + H), 408, 91.

Acknowledgment. Financial support of our work by the National Institutes of Health (GM 55600) is gratefully acknowledged.

Supporting Information Available: ¹H NMR spectra for compounds **6–8**, **12**, and **14–15** and ¹³C NMR spectra for **10** and **15** (8 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

JO9808066